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Transcranial direct current stimulation, a form of non-invasive brain stimulation, is showing increasing promise as an adjunct

therapy in rehabilitation following stroke. However, although significant behavioural improvements have been reported in

proof-of-principle studies, the underlying mechanisms are poorly understood. The rationale for transcranial direct current stimu-

lation as therapy for stroke is that therapeutic stimulation paradigms increase activity in ipsilesional motor cortical areas, but

this has not previously been directly tested for conventional electrode placements. This study was performed to test directly

whether increases in ipsilesional cortical activation with transcranial direct current stimulation are associated with behavioural

improvements in chronic stroke patients. Patients at least 6 months post-first stroke participated in a behavioural experiment

(n = 13) or a functional magnetic resonance imaging experiment (n = 11), each investigating the effects of three stimulation

conditions in separate sessions: anodal stimulation to the ipsilesional hemisphere; cathodal stimulation to the contralesional

hemisphere; and sham stimulation. Anodal (facilitatory) stimulation to the ipsilesional hemisphere led to significant improve-

ments (5–10%) in response times with the affected hand in both experiments. This improvement was associated with an

increase in movement-related cortical activity in the stimulated primary motor cortex and functionally interconnected regions.

Cathodal (inhibitory) stimulation to the contralesional hemisphere led to a functional improvement only when compared with

sham stimulation. We show for the first time that the significant behavioural improvements produced by anodal stimulation

to the ipsilesional hemisphere are associated with a functionally relevant increase in activity within the ipsilesional primary

motor cortex in patients with a wide range of disabilities following stroke.
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Introduction
Chronic stroke is a leading cause of morbidity in the western

world. Most patients are impaired on activities of daily living

and only a small minority return to employment (Kolominsky-

Rabas et al., 2001; Lai et al., 2002). Intensive physiotherapy

remains the gold-standard treatment but outcomes are variable.

Developing therapies as adjuncts to standard rehabilitation tech-

niques to optimize functional outcome is of prime importance.

Non-invasive brain stimulation has generated much interest in

this context because proof-of-principle studies have demonstrated

short-lived functional improvements following stimulation in

chronic stroke patients (Hummel and Cohen, 2006). Transcranial

direct current stimulation (tDCS) holds particular promise as the

necessary equipment is comparatively inexpensive and the stimu-

lation is easy to administer and well tolerated (Hummel and

Cohen, 2006).

tDCS is targeted to the motor system by the placement of an

active scalp electrode over the primary motor cortex (M1) and the

reference electrode over the contralateral supraorbital ridge.

Neurophysiological studies in healthy individuals have demon-

strated that anodal stimulation (current flow from M1 to the ref-

erence electrode) increases cortical excitability and cathodal

stimulation (current direction is reversed) decreases cortical

excitability (Nitsche and Paulus, 2000).

After stroke, relatively reduced activity in ipsilesional M1

during movement of the stroke-affected hand correlates with

greater functional impairments (Ward et al., 2003a). This may

be driven, at least in part, by abnormally high levels of inter-

hemispheric inhibition from the contralesional primary motor

cortex (Ward et al., 2003a; Murase et al., 2004). Activity within

ipsilesional M1 increases over time with rehabilitation and func-

tional recovery (Ward et al., 2003b). There is therefore a strong

rationale for therapies designed to facilitate activity in ipsilesional

M1, either directly via facilitation of the ipsilesional hemisphere

or indirectly via inhibition of the contralesional hemisphere

(O’Dell et al., 2009).

Behavioural studies have demonstrated that tDCS can improve

motor function in chronic stroke patients for a few tens of

minutes, either after anodal stimulation is applied to ipsilesional

M1 (Fregni et al., 2005; Hummel and Cohen, 2005; Hummel

et al., 2005, 2006) or cathodal stimulation to contralesional M1

(Fregni et al., 2005). Daily sessions of stimulation, either anodal

tDCS to ipsilesional M1 or dual stimulation, where the anode is

applied to ipsilesional M1 and the cathode to contralesional M1,

have been shown to improve motor function in chronic stroke for

a few days (Boggio et al., 2007; Lindenberg et al., 2010).

However, the suggestion that benefits of either anodal stimula-

tion applied to ipsilesional M1 or cathodal stimulation to contra-

lesional M1 might arise by increasing ipsilesional M1 activity has

not previously been tested. We aimed to test this hypothesis dir-

ectly using functional MRI.

tDCS studies to date have focused on mildly impaired patients

and have typically used the Jebsen Taylor Test as an outcome

measure (Fregni et al., 2005; Hummel and Cohen, 2005;

Hummel et al., 2005). This multi-part timed motor task would

not be feasible for a functional MRI study and is too challenging

for more impaired patients. We therefore first tested whether

tDCS-evoked improvements in motor function could be detected

by a simple hand motor task that could be performed by patients

with a wide range of impairments both outside and inside the MRI

scanner. This allowed us to relate short-term behavioural improve-

ments evoked by tDCS with changes in brain activity. Our hypoth-

esis was that both anodal tDCS applied to ipsilesional M1 and

cathodal tDCS to contralesional M1 would lead to a decrease in

response times and increase activity in the ipsilesional M1.

Patients and methods
We carried out two separate experiments, designed to assess the

effects of tDCS on motor behaviour (Experiment 1) and on

motor-related functional MRI activity (Experiment 2). For both experi-

ments, patients participated in three separate sessions in randomized

order at least a week apart. Different sessions were used to deliver

anodal tDCS to the ipsilesional hemisphere, cathodal tDCS to the con-

tralesional hemisphere or sham tDCS.

Patients
Patients (mean age 64 years, range 30–80 years; four female) were

recruited with Local Ethical Committee approval and gave their

written informed consent to participate, in accordance with the

Declaration of Helsinki (Rickham, 1964). Thirteen patients participated

in Experiment 1 and 11 patients in Experiment 2. Seven patients

participated in both experiments, but the experiments were performed

at least 1 year apart. All patients were at least 6 months post first

ischaemic or haemorrhagic stroke, had no lesions in M1 and had no

previous history, signs, or symptoms of other neurological conditions.

No patients were on CNS-active medications. Clinical characteristics

of patients studied are described in Table 1.

Transcranial direct current stimulation
A DC-Stimulator (Eldith GmbH) delivered a 1 mA current to the brain

via two electrodes measuring 5 cm� 7 cm. For true stimulation, the

active electrode (referred to as the M1 electrode) was centred on a

position 5 cm lateral to Cz (central zero) and the reference electrode

placed on the contralateral supraorbital ridge. The active electrode was

placed over ipsilesional M1 for anodal stimulation, contralesional M1

for cathodal stimulation and the vertex for sham stimulation. In all

cases patients were blind to the stimulation condition.

For true stimulation the current was ramped up over 10 s, held

constant at 1 mA for 20 min (Experiment 1) or 10 min (Experiment

2) and then ramped down over 10 s. For sham stimulation the current

was ramped up over 10 s and then immediately switched off. Subjects

are not able to distinguish between true and sham stimulation using

this procedure (Gandiga, 2006). For Experiment 1, saline sponges were

used as a conducting medium. For Experiment 2 high chloride EEG

electrode paste was used and electrodes were each fitted with 5 k�

resistors.

Experiment 1: Behavioural study
In all three sessions subjects were asked to perform blocks of a

visually-cued response time task interleaved with a grip force task
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before, during and after 20 min of 1 mA transcranial direct current

stimulation (Fig. 1A).

Patients were seated 80 cm in front of a computer screen with their

arms comfortably supported and performed four blocks of the

response time task and four blocks of the grip force task during the

baseline period, with an inter-block delay of �30 s. Following baseline

testing patients relaxed for 20 min during which tDCS electrodes were

positioned on the scalp. tDCS then started and, after 20 s, patients

recommenced behavioural testing. Four blocks of each task were per-

formed during stimulation and two blocks after stimulation had

ceased. Visual analogue scales were presented at the beginning and

end of the session to assess subjective measures of attention, fatigue,

discomfort and pain.

Motor tasks

For the response time task, subjects held a joystick comfortably

positioned in their stroke-affected hand to respond to green circles

appearing on a monitor until a response was made (40 cues per

block; interstimulus interval = 1–3 s, randomly jittered at 500 ms

intervals; Presentation software v14.5; Neurobehavioural Systems

Inc.).

For the grip force task, subjects were instructed to grip a

dynamometer (Noraxon Inc.) with their stroke-affected hand as

strongly as possible in response to the cue ‘Grip’. Cues were pre-

sented for 3 s after an initial 20 s rest (five cues per block; jittered

interstimulus interval = 17–22 s during which the word ‘Rest’ was

displayed).

Table 1 Patient characteristics

Experiment 1 Experiment 2 Sex Handedness Age Time since stroke
(months)

Type of
stroke

Lesion
side

Lesion
volume

Lesion
locationa

UEFM

1 + M Right 62 39 Infarct Right 30 Subcortical 49

2 + M Right 74 18 Infarct Right 237 084 Cortical 27

3 + M Right 78 22 Infarct Left N/A Cortical 40

4 + F Right 75 35 Infarct Left 2640 Subcortical 16

5 + M Right 66 64 Infarct Left 8141 Subcortical 40

6 + M Right 71 34 Infarct Left 370 Subcortical 35

7 + + M Right 62 62 Infarct Left 102 407 Cortical 57

8 + + M Right 58 42 Infarct Left 1112 Subcortical 59

9 + + F Right 30 70 Haemorrhage Right 40 398 Cortical 66

10 + + M Right 80 36 Infarct Left 671 Subcortical 63

11 + + F Right 78 24 Infarct Left 8091 Cortical 24

12 + + M Right 66 35 Infarct Right 390 Subcortical 62

13 + + M Right 63 42 Infarct Left 10 220 Cortical 24

14 + M Right 69 36 Infarct Left 8820 Subcortical 51

15 + F Right 60 40 Infarct Left 792 Subcortical 61

16 + M Right 43 18 Infarct Left 24 732 Cortical 64

17 + M Right 44 28 Infarct Left 4073 Subcortical 64

a Cortical lesions do not include the primary motor cortex.
UEFM = upper extremity Fugl-Meyer score (max score 66; higher scores reflect better motor performance).

Figure 1 Outline for experimental design for each stimulation session. (A) Experiment 1: Behavioural study. White blocks represent

response time task, grey blocks represent grip force task. VAS = visual analogue scale; to assess fatigue, pain, discomfort and attention.

(B) Experiment 2: Functional MRI study. White blocks represent simple response time task, grey blocks choice response time task and black

blocks are rest periods. tDCS = transcranial direct current stimulation.
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Data analysis

For analysis of response times, any response times 42 s were excluded

from further analysis. Subsequently, the mean and standard deviation

for each block were calculated and any response times that deviated

from the mean by more than �2 SD were excluded from further

analysis. The mean and standard deviation for remaining response

times from each block were then re-calculated.

For grip force, the maximum force recorded for each of the five

responses was used to calculate mean grip force per block.

For both response times and grip force, average scores for the

four prestimulation blocks were averaged to give a baseline measure.

There was no difference between the four during-stimulation blocks

and the two post-stimulation blocks [repeated measures ANOVA

F(1,12) = 1.19, P = 0.29]. All blocks after the 20-min break were

therefore averaged together to give a measure that we will refer to

as ‘post-stimulation’ for simplicity, which includes blocks performed

during and after stimulation.

The mean response time and grip force calculated for post-

stimulation blocks were transformed into change ratios from the

baseline in that session (e.g. %�response time = mean response

timestimulation/mean response timebaseline � 100). Differences between

sessions and over time were assessed using repeated measures

ANOVA. Planned comparisons between each real stimulation condi-

tion and sham were performed using paired t-tests and were not

corrected for multiple comparisons. All statistical analyses were

performed using PASW Statistics v18.0 (IBM).

Experiment 2: Functional magnetic
resonance imaging study
Patients participated in three functional MRI sessions on separate days.

In all sessions subjects were scanned while performing a motor task

before and after 10 min of 1 mA tDCS during which patients lay at

rest (Fig. 1B). Two patients withdrew from the study before comple-

tion, one due to claustrophobia and one due to unrelated medical

reasons.

Motor task

The visually cued motor task included a simple response time and a

choice response time condition. Responses were made via a joystick

held in the stroke-affected hand. The simple response time task

required the patients to flex their wrists in response to any visual

cue. The choice response time task, a simplified version of a task

previously demonstrated to be dorsal premotor cortex-dependent in

healthy controls (O’Shea et al., 2007), required the patients to flex

their wrist in response to a square and to extend it in response to

a circle. A maximum extension of 10� was required. Task blocks were

interleaved with rest blocks during which stimuli were displayed

and the patient was asked to attend, but not respond, to the visual

stimuli.

Eighteen blocks were presented in total in a fixed order. Each

block consisted of six square and six circle stimuli displayed in a

pseudo-random order (cue duration = 1500 ms; interstimulus inter-

val = 500 ms or 2000 ms). The block type identifier was displayed

for 1.5 s, followed by a blank screen for 1.5 s. Response times were

analysed as described for response times in Experiment 1. Due to

technical failure, behavioural data acquired during functional MRI

were only available for seven patients for the anodal and cathodal

tDCS sessions and eight for the sham tDCS session.

Magnetic resonance image acquisition

For all subjects except Patient 01, a 3T Siemens/Varian MRI system

was used. Axial echo-planar volumes were acquired (43 mm� 3 mm

axial slices, echo time = 28 ms, repetition time = 3000 ms, field of

view = 192 � 192) before and after tDCS using a 1 channel receive

head coil. No images were acquired during tDCS. A T1-weighted ana-

tomical image was also acquired for each subject (3D Turbo Flash,

165 mm� 1 mm axial slices, repetition time = 13 ms, echo time-

= 4.9 ms, inversion time = 200 ms, flip angle = 8�, field of view-

= 256 � 256). For technical reasons Patient 01’s scans were

performed on a different 3T Siemens MRI system with a 1 channel

head coil, using identical imaging parameters, but with 51 axial slices.

Magnetic resonance image analysis

Analysis was performed using tools from FMRIB Software Library

(www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). Images from the two

patients with right hemisphere strokes were mirrored about the midline

so that the lesioned hemisphere could be overlaid with images from

the patients with left hemisphere strokes. All echo planar imaging data

were de-noised using MELODIC prior to further analysis (Beckmann

and Smith, 2004). Standard preprocessing and registration was applied

(Supplementary Material).

For each subject, we acquired separate functional MRI runs for pre-

and post-tDCS with anodal, cathodal and sham conditions. We ana-

lysed these data using three levels (see Supplementary Material for

details): (i) within-session, within-subject time-series analysis;

(ii) within-subject, between-session analysis to contrast effects of

tDCS between stimulation conditions; and (iii) across-subject analysis

of contrasts of interest.

Results

Experiment 1: Behavioural study
Experiment 1 was performed to study the effects of tDCS on

response times and on grip force. There was no significant differ-

ence in prestimulation response times between the three stimula-

tion conditions, F(2,24) = 1.79, P = 0.189. Comparing pre- and

post-stimulation response times for the three stimulation

conditions, we found a significant interaction between stimulation

and time [repeated measures ANOVA F(2,24) = 6.59, P = 0.005]

as predicted. We also found a significant main effect of stimulation

[F(2,24) = 4.18, P = 0.02] but no main effect of time

[F(1,12) = 0.01, P = 0.9]. As part of the analysis plan established

prior to the experiment, we tested for changes relative to sham

after each of the stimulation conditions. We found a significant

response time decrease after anodal tDCS to ipsilesional M1 com-

pared with sham stimulation [paired t-test, anodal versus sham

t(12) = 3.83, P = 0.002] and, to a lesser degree, after cathodal

stimulation to contralesional M1 [cathodal versus sham

t(12) = 2.20, P = 0.048] (Fig. 2A).

In addition to comparing the change in response times

due to tDCS with the sham stimulation condition, we were inter-

ested to know whether the response times were changed within

session (i.e. post-stimulation compared with prestimulation).

Anodal tDCS led to a significant decrease in response times

[anodal pre- versus anodal post; t(12) = 1.99, P = 0.04]. There

was no change in response times within session with either cathodal
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tDCS [t(12) = 0.11, P = 0.92] or sham tDCS [t(12) = 1.48,

P = 0.16].

Within session, response times did not change significantly

over the post-stimulation blocks [repeated measures ANOVAs:

anodal tDCS; F(5,60) = 0.68, P = 0.63; cathodal tDCS;

F(5,60) = 1.87, P = 0.1; sham tDCS F(5,60) = 0.60, P = 0.69].

A significant correlation between baseline response time and

percentage change in response time due to anodal tDCS also

was observed; patients with slower baseline response times

showed greater improvements in response time in response to

stimulation (r = �0.776, P50.01).

There was no significant effect of stimulation on grip force

(all P40.1). There also were no significant changes in attention,

pain or discomfort scores over the course of the experiment as

determined by the visual analogue scale scores [main effect of time

F(3,33)Attention = 1.28, P40.29; F(3,33)Pain = 1.34, P40.27;

F(3,33)Discomfort = 1.34, P40.27]. Patients showed increased

fatigue over time [F(3,33) = 4.75, P = 0.01], but this was not

affected by stimulation condition [time � stimulation interaction

F(6,66) = 1.52, P = 0.18].

There was no significant effect of stimulation on the number

of trials excluded from each block due to variability in response

time: no main effect of stimulation [repeated measures

ANOVA F(2,24) = 0.291, P = 0.75]; no main effect of time

[F(1,12) = 0.676, P = 0.453]; and no interaction between stimula-

tion and time [F(2,24) = 1.39, P = 0.67].

Experiment 2: Functional magnetic
resonance imaging study
Experiment 2 was performed to define any cortical activation

changes associated with the behavioural effects of tDCS on re-

sponse times. Analysis of changes between pre- and post-

stimulation trials in the simple response time task performed in

the scanner demonstrated no significant difference in prestimula-

tion response times between the three stimulation conditions

F(2,10) = 1.79, P = 0.216. There was a significant interaction

between stimulation and time [repeated measures ANOVA

F(2,10) = 6.38, P = 0.01] as for Experiment 1. We found no

significant main effect of stimulation [F(2,10) = 0.2, P = 0.82]

and no main effect of time [F(1,5) = 0.04, P = 0.83]. Response

times decreased following anodal tDCS to ipsilesional M1 com-

pared to the sham condition [paired t-test, anodal versus sham

t(6) = 2.59, P = 0.04], but no significant response time change

after cathodal tDCS to contralesional M1 was found [paired

t-test, cathodal versus sham t(6) = 0.91, P40.3] (Fig. 2B).

In addition to comparing the change in response times due

to tDCS with the sham stimulation condition, we were interested

to know whether the response times were changed within session

(i.e. post-stimulation compared with prestimulation). Anodal tDCS

led to a significant decrease in response times [anodal pre versus

anodal post; t(6) = 3.16, P = 0.01]. There was no change in re-

sponse times within session with either cathodal tDCS [t(6) = 0.18,

P = 0.85] or sham tDCS [t(7) = 1.35, P = 0.22]. We also investi-

gated the effect of stimulation on the number of responses

removed from each session due to variability. There was no

main effect of stimulation [repeated measures ANOVA

F(2,10) = 1.00, P = 0.4], no main effect of time [F(1,5) = 3.92,

P = 0.1] and no interaction between stimulation and time

[F(2,10) = 1.24, P = 0.33].

There was no correlation between any clinical scores or lesion

volume and behavioural improvement with either tDCS paradigm.

As expected, performance of the simple response time task

compared to rest prior to stimulation was associated with bilateral

activation of visuomotor areas (Supplementary Fig. 1). There were

no significant differences between the baseline motor-related

activation patterns in the three sessions. We first contrasted the

motor-related activation patterns before and after each real

tDCS condition compared with sham i.e. [(tDCSPost–tDCSPre)–

(shamPost–shamPre)] using a voxel-wise analysis. After anodal

tDCS applied to ipsilesional M1, task-related activity increased

within the ipsilesional (stimulated) M1, bilateral dorsal premotor

cortex and the supplementary motor area (Fig. 3A and Table 2).

Cathodal tDCS applied to contralesional M1 was associated with a

Figure 2 Behavioural effects of tDCS. (A) Experiment 1. Anodal

stimulation to the ipsilesional M1 led to a significant decrease in

response times. No significant difference was seen with cathodal

stimulation. (B) Experiment 2. Anodal tDCS led to a significant

shortening of response times. No change in response times was

seen in response to cathodal tDCS. Columns represent

mean � SE. Significant differences (P50.05) between condi-

tions (asterisk) and within session (section symbol) are

highlighted.
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significant increase in motor-related activity within the ipsilesional

(unstimulated) M1, dorsal premotor cortex and supplementary

motor area, as well as the contralesional (stimulated) M1 (Fig.

3B and Table 2). Common regions of increased motor-related ac-

tivity in response to both anodal tDCS to ipsilesional M1 and

cathodal tDCS to contralesional M1 were found in ipsilesional

M1, dorsal premotor cortex and supplementary motor area

(Fig. 3C and Table 2).

We then tested voxel-wise for a relationship between behav-

ioural improvements on the simple response time task and cortical

activation increases in response to each real tDCS condition. For

anodal tDCS to ipsilesional M1 we found a negative correlation;

patients with larger decreases in response times showed greater

increases in task-related cortical activation in the ipsilesional (sti-

mulated) M1 (Fig. 3D and Table 3). By contrast, no significant

correlation was found between response time change due to cath-

odal tDCS and voxel-wise functional MRI signal changes. To dir-

ectly contrast the strength of this relationship between the two

real stimulation conditions we compared the correlation coeffi-

cients from the voxel showing maximal correlation in each case.

Figure 3 (A) Areas of increased motor-related activation in response to the simple response time task after anodal stimulation compared

with sham [i.e. for the contrast (anodal post–anodal pre)–(sham post–sham pre)]. The column graph (top right) shows the mean change in

activity within these suprathreshold regions and demonstrates a significant increase in activity within these areas after anodal stimulation

and no change after sham stimulation. (B) Areas of increased motor-related activity in response to the simple response time task after

cathodal stimulation compared with sham. The graph (centre right) demonstrates an increase in activity within these suprathreshold

regions in response to cathodal stimulation but not to sham. (C) Areas of increased motor-related activity after anodal tDCS compared

with sham (blue), increased motor-related activity after cathodal tDCS compared with sham (yellow) and areas of increased motor-related

activity common to both stimulation conditions (green). (D) Areas of significant correlation between change in motor-related activation

after anodal stimulation (i.e. the contrast anodal post–anodal pre) and change in response times after anodal stimulation. The plot (bottom

right) demonstrates this relationship within in the areas shown. BOLD = blood oxygen level-dependent; PMd = dorsal premotor cortex;

RT = response time; SMA = supplementary motor area.
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This demonstrated that the correlation between response time

change and functional MRI signal due to tDCS was significantly

stronger for anodal compared to cathodal tDCS (anodal tDCS

maximum correlation r = �0.934, cathodal tDCS maximum correl-

ation r = 0.34; Fisher’s r-to-Z conversion Z = �3.11, P50.001).

To ensure that this correlation between change in functional MRI

signal due to anodal tDCS and change in response time was not

driven by variations in baseline response time, we performed a

partial correlation between the mean functional MRI signal

change due to anodal tDCS within the suprathreshold region

demonstrated in Fig. 3D and change in response time, correcting

for baseline response time in the anodal tDCS session. The rela-

tionship between change in functional MRI signal and response

time remained (r = �0.902).

We additionally assessed responses with a choice response

time task. There was no change in choice response times and

no change in choice response time task-related functional MRI

activity in response to either tDCS condition.

Discussion
This study aimed to explore the cortical activation changes under-

lying behavioural improvement evoked by tDCS to the motor

cortex in patients with stable, chronic disability after a first

stroke. Both within and outside the MRI scanner we found that

anodal tDCS applied to ipsilesional M1 improved response times

across widely varying levels of recovery, confirming previous be-

havioural reports in more restricted patient groups (Fregni et al.,

2005; Hummel et al., 2005, 2006).

For the first time, the immediate functional MRI brain activation

changes associated with these behavioural improvements were

characterized. Anodal tDCS to ipsilesional M1 was associated

with increased task-related activity in the ipsilesional (stimulated)

motor cortex, premotor cortex and supplementary motor area.

Moreover, the degree of behavioural improvement immediately

following tDCS was correlated with the stimulation-induced

changes in functional MRI signal within the stimulated M1. It

may be that the mechanisms underlying long-term behavioural

improvements in patients are different from those demonstrated

here. Repeated, multiple sessions of tDCS potentially lead to

longer-lasting motor improvements (Boggio et al., 2007; Reis

et al., 2009). One previous study using 5 days of motor training

paired with a ‘dual’ stimulation montage found evidence for

increased motor-related activity in ipsilesional M1 after the 5 day

training period (Lindenberg et al., 2010). Future work should test

whether this increased activity is also found for the conventional

montage used here.

Both anodal tDCS applied to ipsilesional M1 and cathodal tDCS

applied to contralesional M1 were associated with increased ipsile-

sional M1 activation and in our behavioural study both were asso-

ciated with some degree of performance improvement, although

for cathodal tDCS this improvement was only seen when con-

trasted with the sham tDCS session. When the regions of

increased motor-related activity after anodal tDCS to ipsilesional

M1 and cathodal tDCS to contralesional M1 were directly com-

pared a region of overlap was demonstrated within the hand

region of ipsilesional M1, highlighting this region as a possible

anatomical substrate for the behavioural improvement seen in re-

sponse to stimulation. However, univariate analyses of functional

MRI data cannot easily provide insights into network hierarchies.

Future studies using effective connectivity analysis (Marreiros

et al., 2008) or using complementary modalities that provide

greater temporal resolution, such as magnetoencephalography,

could be used for this purpose.

It has been previously shown that anodal tDCS increases excit-

ability within the stimulated region (Nitsche et al., 2000) and, in

addition to glutamatergic effects, decreases the total �-aminobu-

tyric acid (GABA) pool within the stimulated region (Nitsche et al.,

2005; Stagg et al., 2009a). As well as increases in glutamatergic

signalling, decreases in GABA-ergic activity have been implicated

Table 2 Regions of significantly increased activity in
response to the simple motor task after tDCS when com-
pared with sham

Cluster
size (mm3)

Maximum
Z-score

MNI Coordinates of
maximum Z-statistic

X Y Z

Increased functional MRI activity after anodal stimulation
compared with sham

Overall 4616 3.16 �18 �24 70

M1Ipsi 3.16 �18 �24 70

PMdIpsi 3.05 �32 �2 60

SMA 2.75 �12 �16 60

Increased functional MRI activity after cathodal stimulation
compared with sham

Overall 6104 3.35 �16 �24 68

M1Ipsi 3.35 �16 �24 68

M1Cont 3.21 31 �22 56

S1Ipsi 2.69 �18 �32 62

PMd 2.65 �20 �8 66

SMA 2.54 �4 �14 58

Volumes of overlap of increased functional MRI activity after
anodal stimulation compared with sham and cathodal stimulation
compared with sham

M1Ipsi 480

SMA 224

PMd 128

Cont = contralesional; Ipsi = ipsilesional; MNI = montreal neurological institute;
PMd = dorsal premotor cortex; SMA = supplementary motor area.

Table 3 Correlation between increased functional MRI
activity after anodal stimulation and induced behavioural
change

Cluster
size (mm3)

Maximum
Z-score

MNI Coordinates of
maximum Z-statistic

X Y Z

Overall 5400 3.01 �36 �36 46

M1Ipsi 3.01 �36 �36 46

PMdIpsi 2.37 �50 �2 36

Ipsi = ipsilesional; MNI = montreal neurological institute; PMd = dorsal premotor
cortex.
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in behavioural improvements in rodent models of stroke (Clarkson

et al., 2010). Future pharmacological studies could test whether

GABA modulation is a critical mediator for the behavioural effects

observed here, possibly explaining the smaller magnitude of the

behavioural effects of cathodal tDCS applied to contralesional M1.

An earlier, smaller study previously had suggested possible

behavioural improvements in patients following strokes after cath-

odal tDCS applied to contralesional M1 (Fregni et al., 2005). We

partially replicated this observation in Experiment 1, but found

that the behavioural effects of cathodal tDCS to contralesional

M1 were much weaker than those of anodal tDCS to ipsilesional

M1, as cathodal tDCS to contralesional M1 led to no absolute

improvement in response times but did lead to a reduction of

the increase in response times seen with sham tDCS, which we

believe is a fatigue effect. Although motor-related brain activity

during the simple response time task was increased in ipsilesional

M1 with cathodal stimulation, in contrast to our findings for the

anodal tDCS condition, no relationship between performance and

functional MRI activity was found. The increased activity within

the stimulated (contralesional) M1 in response to cathodal tDCS

applied to contralesional M1, an inhibitory tDCS protocol, is in line

with findings from our previous study in healthy controls (Stagg

et al., 2009b), and, in inhibitory repetitive transcranial magnetic

stimulation studies has previously been suggested to be the result

of locally decreased synaptic efficiency (Lee et al., 2003).

It is not clear why there is a discrepancy between the magnitude

of the effects of cathodal tDCS applied to contralesional M1 re-

ported here and in the previous study, where cathodal tDCS

applied to contralesional M1 was found to be as effective as

anodal tDCS to ipsilesional M1 (Fregni et al., 2005). It is unlikely

that the behavioural probes used in this study are insensitive to the

effects of tDCS, as we and others (Hummel et al., 2006) have

demonstrated robust significant effects on a simple response time

task of anodal tDCS to ipsilesional M1. A potentially important

difference between the current study and the previous work

(Fregni et al., 2005), is that our patient group was more impaired.

Increased activity in the contralesional hemisphere may be func-

tionally important rather than maladaptive in more severely im-

paired patients (Johansen-Berg et al., 2002; Gerloff et al., 2006;

Lotze et al., 2006).

We did not find any significant improvement in grip force

following either stimulation condition. A previous study reported

improved grip force (and response times) following anodal tDCS

to ipsilesional M1 (Hummel et al., 2006). However, the patients in

the current study were more severely impaired than those in pre-

vious reports. In our experience, moderately and severely impaired

patients find maintaining the optimal posture for good task per-

formance difficult. We did not find any effect of either stimulation

condition on choice response time. It may be that the more mod-

erately and severely impaired patients in this study found the wrist

extension movement required for this task difficult. It is also pos-

sible that this dorsal premotor cortex-dependent choice response

time task is not affected by tDCS to M1; even though the elec-

trode position used might be expected to have some effects on at

least the more caudal parts of dorsal premotor cortex. An alter-

native explanation for the effects of tDCS on response times seen

is as reflecting a global change in attention, rather than a specific

motor effect. We would consider this unlikely as no effect was

seen on the choice-response time task and the number of re-

sponses excluded due to long reaction times in the simple re-

sponse time task did not change with stimulation. However, we

cannot rule out this possibility. Future studies testing alternative

stimulation sites could explore in more detail the anatomical spe-

cificity of the effects found here.

Conclusion
Here we have provided the first demonstration that improvements

in specific motor functions elicited by tDCS are associated with

changes in motor cortical activity and shown that these include

increased activity in the ipsilesional motor cortex. The functional

relevance of the changes with anodal tDCS is suggested by the

positive correlation between increases in ipsilesional M1 activity

and improvements in performance on the simple response time

task. By contrast to the behavioural improvements with anodal

tDCS to ipsilesional M1, behavioural responses to cathodal tDCS

to contralesional M1 were much smaller, and only seen when

response time change was compared with sham tDCS. Future

studies can extend this validation of functional MRI as a neuro-

physiological measure of response with tDCS to better understand

task-dependent effects and to optimize potentially therapeutic

stimulation paradigms.
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